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MIXED CONVECTION ABOUT A NON-ISOTHERMAL 
VERTICAL SURFACE IN A POROUS MEDIUM 
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SUMMARY 

The problem of mixed convection about non-isothermal vertical surfaces in a saturated porous medium is 
analysed using boundary layer approximations. The analysis is made assuming that the surface temperature 
varies as an arbitrary function of the distance from the origin. A perturbation technique has been applied to 
obtain the solutions. Using the differentials of the wall temperature, which are functions of distance along the 
surface, as perturbation elements, universal functions are derived for various values of the governing 
parameter GrlRe. Both aiding and opposing flows are considered. The universal functions obtained can be 
used to estimate the heat transfer and fluid velocity inside the boundary layer for any type of wall temperature 
variation. As a demonstration of the method, heat transfer results have been presented for the case of the wall 
temperature varying as a power function of the distance from the origin. The results have been studied for 
various combinations of the parameters GrJRe and the power index m, taking both aiding and opposing flows 
into consideration. On comparing these results with those obtained by a similarity analysis, the agreement is 
found to be good. 
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1. INTRODUCTION 

Transport processes in porous media occur in many different fields and engineering applications, 
such as petroleum reservoirs and geothermal operations, packed-bed chemical reactors, grain 
storage, insulation, and cores of nuclear reactors. This has led to extensive research into the subject 
for the past two decades. 

The study of mixed convection in a porous medium has important applications in geothermal 
reservoirs, where fluid motion may take place due to pressure gradients generated as a result of 
withdrawal or injection of geothermal fluids. Such fluid motion, when combined with the 
buoyancy force due to heating or cooling from a vertical surface, will give rise to mixed convection 
adjacent to the vertical surface. The first work in this connection was done by Combarnous and 
Bia' who studied the effect of mean flow on the onset of stability in a porous medium bounded by 
two isothermal parallel plates. Later Cheng2 considered the problem of mixed convection about a 
wedge and obtained a similarity solution for the special case where the free stream velocity and wall 
temperature vary according to some power function of distance. Cheng and Minkowycz3 have 
analysed free convection about a vertical plate embedded in porous media. 

A study of mixed convection about a horizontal surface embedded in a porous medium where 
the gravitational force acts perpendicular to the surface has been made by Cheng.4 He obtained 
similarity solutions for the case of zero angle of attack with constant heat flux and for stagnation 
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point flows with T,ccx2. Later Minkowycz et al.' analysed non-similar boundary layers in mixed 
convection about a horizontal heated surface. B e j a ~ ~ , ' . ~  Walker and Homsay,' Poulikakos and 
Bejan," Prasad and Kulacki" and Tong and Subramanian" have investigated the various 
aspects of studies in porous media. 

In the present paper, a boundary layer analysis has been done for mixed convection about non- 
isothermal vertical surfaces in a porous medium. (Cheng* has already analysed the same for 
isothermal vertical surfaces.) It is assumed that the surface temperature varies as an arbitrary 
function of the distance from the origin. The solutions, which are based on perturbations to the 
isothermal case, can be used to obtain heat transfer results for any type of wall temperature 
variation. 

2. ANALYSIS 

We consider the problem of combined free and forced convection in a fluid-saturated porous 
medium adjacent to a vertical impermeable wall. The temperature of the vertical wall is assumed to 
vary as an arbitrary function of the distance from the origin. Figures l(a) and (b) show the physical 
model and co-ordinate system, where x and y are the Cartesian co-ordinates in the directions 
perpendicular to and along the vertical wall. The origin of the co-ordinate system is chosen at that 
point where the wall temperature deviates from that of the mainstream fluid. We shall assume that: 

(i) there is no phase change occurring in the fluid; 
(ii) the convective fluid and the porous medium are everywhere in local thermodynamic 

equilibrium; 
(iii) the properties of the fluid and the porous medium are homogeneous and isotropic; 
(iv) the Boussinesq approximation can be applied. 

Under these assumptions the governing equations of the problems are 

au av -+-=o, ax ay 

. .  
Y ' t ' .  . 

( a )  ( b )  

Figure 1 .  Physical model and co-ordinate systems 
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The boundary conditions are 

x=o, u=o, Tw = Tw(Y), 
X h o o ,  u+v,, T+ T ,  . 

The ‘ +’ and ‘2’ signs in equation (3) indicate aiding and opposing flows as shown in Figures l(a) 
and (b) respectively. The wall temperature is assumed to be higher than that of the surrounding 
fluid. In aiding flows the free stream velocity is in the same direction as the buoyancy force, while in 
opposing flows they are in opposite directions. The free stream velocity V ,  is assumed to be 
uniform. 

The continuity equation (1) can be satisfied automatically by introducing the stream function $ 
as 

(8) = a*/ay, = - a+/ax. 

Eliminating p from equations (2) and (3) by cross-differentiation and making use of equation (9, 
the resulting equation in terms of $ is 

a’$ a’$ KBgaT 
a x 2  a p  ax’  -+-=T-- 

where the ‘-’ and ‘+’ signs indicate aiding and opposing flows respectively. 
In terms of $ the energy equation (4) can be written as 

(9) 

If convection takes place in a thin layer such that a/dyea/ax, we have a2+/dy2ed2$/ax2 in 
equation (9) and a2T/ay2 e a2T/ax2 in equation (10). Neglecting the smaller orders in equations (9) 
and (lo), the simplified forms of the governing equations are 

a$aT a+aT a2T 
ay ax  ax a y  a x 2  
-----=up. 

The boundary conditions are 

w a y  = 0, T=Tw(y)  at x=O, 

Solution of equations 

The governing equations (1 1) and (12) must now be suitably transformed so as to seek a 
perturbation type of solution. We introduce a new independent variable q, a non-dimensional 
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stream functionfand a non-dimensional temperature 8. Both f and 8 are assumed to be functions 
of q and a set of infinite number of variables {An(y)), which together express the characteristics of 
the boundary layer. 

Let the function f be related to the original stream function by the equation 

Similarly let 8 be defined as 

The set {An(y)} are as yet undetermined functions of y. 

terms off and 8 are 
Carrying out the above transformations in equations (1 1) and (12), the resulting equations in 

where Gr is the modified Grashof number defined as 

and Re is the Reynolds number defined as 

Re = Vm y/v . 
Now a study of equation (19) reveals that it becomes a function of q and Ln(y) when An(y) is 

defined as 

Here it is assumed that T,- T ,  is infinitely differentiable with respect to y. 
Even after substituting equation (22) into equation (19), the resulting equation is still a partial 

differential equation. To transform it into an ordinary differential equation, f and 8 are expanded 
as power series of An with functions of q as coefficients: 

f(V, 10, . . . 3 A n ,  . . .)=F(?)+Aofo(q)+A1fi(?)+ . . . + G f o o ( ~ ) + n : f i i ( ~ ) +  . . . 9 (23) 

~ ( q ,  A,, lv1, . . . , A,, . . . ) = H ( ~ ) + ~ o e o ( ~ ) + i l e , ( ~ ) +  . . . + ~ ; e o 0 ( ~ ) + ~ : e , , ( ~ ) +  . . . . (24) 

Using the transformations (22), (23) and (24) in equations (1 8) and (19), and collecting terms of 
equal A,, we get an infinite number of sets of ordinary differential equations, the first few of which 
are as follows: 

F" = f (Gr/Re)H',  

4 FH' = HI', (25) 

(26) 

f: = f (Gr/Re)@,, 
F @o + $ fo H ' - F '8, - F'H = @;, 
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f;’ = T (Gr/Re)B; , 
+F& +3fl H’ - 2F’Ol + Hlfo - F‘B,  = e;l, 

f ’ d o  = T (Gr/Re)Bbo, 
$F&o + $f,oH’ +$foe0 - Hlfo - 2F’Ooo -f$o - fbH = 8&. 

The boundary conditions of the above equations are as follows: 

F =fo =fi =foo =fz = 0, 
H = l ,  eo=e,=eoo=ez=o at ?=o, 
F ’ =  - 1, f b  =f; =fbo =f; = 0, 
~ = e o = e l = e o o = e , = o  as V+OO. 

In all the above equations a prime indicates differentiation with respect to r]. 

3. RESULTS AND DISCUSSION 

Equations (25)428)  with boundary conditions (29) and (30) were solved using the fourth-order 
Runge-Kutta method. Universal functions were obtained for both aiding and opposing flows with 
Gr/Re as a parameter. The first few universal functions required to calculate the temperature 
profiles are shown in Figures 2-6. The corresponding universal constants for aiding and opposing 
flows are shown in Tables I and I1 respectively. It may be noted that the universal function 
obtained by solving the equation set (25) is actually the isothermal solution obtained by Cheng.’ 

The result of greatest practical importance is the heat transfer rate. The local surface heat flux 
along the vertical surface may be expressed as 

4 = - k,(d T / ~ x ) ,  = 0 .  

4 = - k,( T w  - TaJ( ~ m / a Y ) ” 2 ( ~ ~ / ~ r ] ~ ”  = 0 .  

(31) 

(32) 

Expressing q in terms of r]  and 8, 

-0.4’ 

Figure 2. Universal functions of temperature 
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V.  7 - 

Figure 3. Universal functions of temperature 

_ .  . 

Figure 4. Universal functions of temperature 

The local heat transfer coefficient is expressed as 

h=d( T w  - Tm) (33) 

N U  = hy/k, .  (34) 

Nu/(RePr)"2 = - (aO/dn) ,= , .  (35) 

(36) 

and the local Nusselt number is 

Combining equations (32), (33) and (34), we can express the dimensionless heat transfer rate as 

Equation (35) can be thrown into perturbation form by using equation (24): 

Nu/(Re Pr)l/' = - [H'(O)+n,e*(o)+n,e;(o)+ . . . +L;@*o(o)+ . . .]. 
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Figure 5. Universal functions of temperature 

t 
-0 6 I 

Figure 6. Universal functions of temperature; opposing flow, Gr/Re= 1.0 

Using the universal constants of Tables I and I1 and the heat transfer formula of equation (36), 
heat transfer results can easily be calculated for any type of wall temperature function. Heat 
transfer results for a power-law type of wall temperature variation are presented below. 
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0.0 -0.5642 -0.5758 0.0941 0.0 - 1.0 0.0 0.0 0.0 
0.5 -0.6474 -0.6733 0.1053 0.0053 - 1.5 0.0 0.0 0.0 
1 .o -0.7205 -0.7595 0.1 151 0'0095 - 2-0 0.0 0.0 0.0 
3.0 -0.9572 - 1.0408 0.1471 0.0209 - 4.0 0.0 0.0 0.0 

10.0 - 1.5155 - 1.7209 0,2208 0.0403 - 11.0 0.0 0.0 0.0 
20.0 -2'0652 -2.4159 0.2887 0.0528 -21.0 0.0 0.0 0.0 

Table 11. Universal constants for opposing flows 

Table 111. Values of Nu/(RePr) ' l2  for aiding flows by perturbation method (wall 
temperature varying as power function) 

GrlRe 0.0 0.25 0 50 0.75 1 .o 
0.0 0.5642 0.7258 0.8756 1.0137 1.14 
0.5 0.6474 0.8352 1.009 1 1.1690 1.3154 
1 .o 0.7205 0.9314 1.126 1.306 1.4705 
3.0 0.9572 1.2437 1.5092 1.7566 1.9771 

10.0 13155 1.9846 2.42 1 1 2.8249 3.1961 
20.0 2.0652 2.7200 3.332 3.901 5 4.4283 

Table IV. Values of Nu/(Re for aiding flows by similarity analysis (wall 
temperature varying as power function) 

GrlRe 0.0 0.25 0.50 0.75 1 .o 
0.0 0.5642 0.7399 0.8863 1.0179 1.1284 
0.5 0.6474 0.8502 1.0191 1.1626 1.2990 
1 .o 0.7205 0.9473 1.126 1.3012 1.4492 
3.0 0.9572 1.2597 1.5158 1.7325 1.9319 

10.0 1.5155 1.9961 2.408 1 2.761 8 3.262 
20.0 2.0652 2.7274 3.2853 3.9265 4.322 
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Power-law variation of wall temperature 

The wall temperature may be assumed to vary as 

T, - T,  = My”,  

where M and m are constants. 
For this case the values of A,,, A , ,  etc. may be calculated using equation (22) and are found to be 

A, = rn, A, =rn(m- l), A; = m’, . . . .  (37) 
Calculating Ao,  A, ,  etc. for various rn and making use of Tables I and 11, Nu/(RePr)’/’ can be 
calculated from equation (36) for various values of rn and Gr/Re. The values are shown in Tables I11 
and V. Tables IV and VI show the heat transfer results obtained by Dutta and Seetharamd by 
similarity analysis. There is good agreement between the results obtained by the two methods. 

When m = O  we have the isothermal wall case and the values of Nu/(Re Pr)”’ in the above tables 
correspond to those obtained by Cheng.’ 

The effect of the power index rn on the heat transfer rate Nu/(Re Pr)’/’ for various values of Gr/Re 
is shown in Figures 7 and 8 for aiding and opposing flows respectively. As expected, the heat 
transfer rate increases with increasing m. It is also observed that for aiding flows the effect of m on 
the heat transfer rate is more significant at higher values of Gr/Re, while for opposing flows the 
effect is more significant at lower values of Gr/Re. 

For a given value of m, say 05,  the heat transfer rate is 0.8161 for Gr/Re= 1.0. As m increases, 
the increase in the absolute value of Nu/(RePr)’” is greater for smaller values of Gr/Re (say 
Gr/Re = 0 2 )  than for larger values of Gr/Re (say Gr/Re = 1). In other words, the slope of the heat 

Table V. Values of N u / ( R e  Pr)’” for opposing flows by perturbation method (wall 
temperature varying as power function) 

m 

Gr/Re 0.0 0.25 0.50 0.75 1 .o 
0.2 05269 0.6769 0.8161 0.9444 1.0619 

0.4 0.4866 0.624 1 0.75 19 0.8698 09779 
0.6 0.442 1 0.5660 0.681 3 0.7877 0.8855 
0.8 0.391 7 0.5006 0.601 9 0.6955 0.78 16 
1 .O 0.332 1 0.4239 0.5086 0.5860 0.6563 

Table VI. Values of Nu/(RePr)’ l z  for opposing flows by similarity analysis (wall 
temperature varying as power function) 

GrlRe 0.0 0.25 0.50 0.75 1 .o 
0.2 0.5269 0.6962 0.8292 0.9469 1.0529 
0.4 0.4866 0.6376 0.7668 0.8746 0.9718 
0.6 0.442 1 0.5795 0-6950 0.7970 0.8843 
0.8 0.391 7 0.5 152 0.6135 0.7050 0.7796 
1 .o 0.3321 0.4378 0.5248 0.5923 0.6648 
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Figure 7. EKect of m on Nu/(Re Pr)’”; aiding flow 

transfer rate curves with smaller values of Gr/Re is greater than the slope of those with larger values 
of Gr/Re.  

From the results obtained by Cheng and Minkowycz3 for free convection about a vertical plate, 
we can write down the following expressions for the heat transfer rate for pure free convection for 
various values of the parameter m: 

Nu/(Re  Pr)’12 = 0.444 (Gr/Re)’ i2  (for m =O), (38)  

Nu/(RePr)”2  =0.7615(Gr/Re)’ /2  (for m=0.5), (39) 

Nu/(Re Pr)’” = 1.001 (Gr/Re)’/’ (for m =  1). (40) 
The corresponding forced convection results can be obtained from Table 111 using Gr/Re = 0. 

The heat transfer results have been plotted in Figures 9 and 10 along with the free and forced 
convection asymptotes. It is observed that for m=O the maximum deviation from the asymptotes 
occurs near Gr/Re = 1.6. But as the parameter m increases, the point of maximum deviation shifts to 
lower GrlRe. (The point shifts approximately to GrlRe = 1.35 for m= 0.5 and to Gr/Re = 1.25 for 
m =  1. The corresponding deviations are about 40%, 37% and 34% for m=O, 0.5 and 1 
respectively.) 

As the parameter Gr/Re increases beyond the point of maximum deviation, the free convection 
effect dominates and the situation approaches that of pure free convection. This happens at a lower 
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Figure 8. Effect of rn or Nu/(RePr)' i2 ,  opposing flow 
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Figure 9. Heat transfer results; aiding flow 

value of Gr/Re as m increases, as can be seen from Figure 9. In the case of opposing flows it is seen 
from Figure 10 that the heat transfer rate decreases as Gr/Re increases. For a given value of &/Re 
the reduction in heat transfer is greater for higher values of m (especially when Gr/Re > 0.7). 
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Figure 10. Heat transfer results; opposing flow 

4. CONCLUSIONS 

The present paper deals with the determination of the heat transfer rate for combined free and 
forced convection in an external flow through fluid-saturated porous media adjacent to a non- 
isothermal (arbitrarily varying) vertical wall. Both aiding and opposing flows have been analysed. 
A wall temperature variation of the power-law type T, - T ,  = M,” is shown to be a particular case 
and solutions are given for various value of the index m. The solutions are obtained once and for all 
by using the universal functions derived in the analysis (whereas earlier authors had to solve for 
each value of m to get the solution). The results have been compared with those obtained by a 
similarity analysis and the agreement is found to be good. The universal constants can also be used 
to obtain solutions for any other type of wall temperature variation. 

NOMENCLATURE 

non-dimensional stream function (equation (1 5)) 

universal functions for velocity (equation (23)) 
acceleration due to gravity 
Grashof number (equation (20)) 
universal function for temperature (equation (24)) 
local heat transfer coefficient (equation (33)) 
equivalent thermal conductivity of saturated porous medium 
permeability of the medium 
Nusselt number (equation (34)) 
integer constant (equation (22)) 
pressure 
heat flux (equation (31)) 



MIXED CONVECTION ABOUT A NON-ISOTHERMAL SURFACE 735 

Re Reynolds number (equation (21)) 
T temperature 
U area-averaged velocity in x-direction 
U area-averaged velocity in y-direction 
vca area-averaged free stream velocity 
X? Y co-ordinate system shown in Figures l(a) and (b) 

Greek symbols 

effective thermal diffusivity in porous medium 
coefficient of thermal expansion 
dimensionless variable (equation (17)) 
dimensionless temperature (equation (1 6)) 
a set of functions of y (equation (22)) 
dynamic viscosity of the fluid 
kinematic viscosity of the fluid 
fluid density 
stream function (equation (8)) 

Subscripts 

W for wall conditions 
co for condition outside the boundary layer 
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